An operator is a symbol that tells the compiler to perform specific
mathematical or logical manipulations. F# is rich in built-in operators
and provides the following types of operators −
Show Example
Assume variable A holds 10 and variable B holds 20, then −
Show Example
Show Example
Show Example
Assume if A = 60; and B = 13; now in binary format they will be as follows −
A = 0011 1100
B = 0000 1101
----------------- A&&&B = 0000 1100
A|||B = 0011 1101
A^^^B = 0011 0001
~~~A = 1100 0011
The Bitwise operators supported by F# language are listed in the following table. Assume variable A holds 60 and variable B holds 13, then −
Show Example
Arithmetic Operators
The following table shows all the arithmetic operators supported by F# language. Assume variable A holds 10 and variable B holds 20 then −Show Example
Operator | Description | Example |
---|---|---|
+ | Adds two operands | A + B will give 30 |
- | Subtracts second operand from the first | A - B will give -10 |
* | Multiplies both operands | A * B will give 200 |
/ | Divides numerator by de-numerator | B / A will give 2 |
% | Modulus Operator and remainder of after an integer division | B % A will give 0 |
** | Exponentiation Operator, raises an operand to the power of another | B**A will give 2010 |
Comparison Operators
The following table shows all the comparison operators supported by F# language. These binary comparison operators are available for integral and floating-point types. These operators return values of type bool.Assume variable A holds 10 and variable B holds 20, then −
Show Example
Operator | Description | Example |
---|---|---|
= | Checks if the values of two operands are equal or not, if yes then condition becomes true. | (A == B) is not true. |
<> | Checks if the values of two operands are equal or not, if values are not equal then condition becomes true. | (A <> B) is true. |
> | Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true. | (A > B) is not true. |
< | Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true. | (A < B) is true. |
>= | Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true. | (A >= B) is not true. |
<= | Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true. | (A <= B) is true. |
Boolean Operators
The following table shows all the Boolean operators supported by F# language. Assume variable A holds true and variable B holds false, then −Show Example
Operator | Description | Example |
---|---|---|
&& | Called Boolean AND operator. If both the operands are non-zero, then condition becomes true. | (A && B) is false. |
|| | Called Boolean OR Operator. If any of the two operands is non-zero, then condition becomes true. | (A || B) is true. |
not | Called Boolean NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false. | not (A && B) is true. |
Bitwise Operators
Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &&& (bitwise AND), ||| (bitwise OR), and ^^^ (bitwise exclusive OR) are as follows −Show Example
p | q | p &&& q | p ||| q | p ^^^ q |
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 1 |
A = 0011 1100
B = 0000 1101
----------------- A&&&B = 0000 1100
A|||B = 0011 1101
A^^^B = 0011 0001
~~~A = 1100 0011
The Bitwise operators supported by F# language are listed in the following table. Assume variable A holds 60 and variable B holds 13, then −
Operator | Description | Example |
---|---|---|
&&& | Binary AND Operator copies a bit to the result if it exists in both operands. | (A &&& B) will give 12, which is 0000 1100 |
||| | Binary OR Operator copies a bit if it exists in either operand. | (A ||| B) will give 61, which is 0011 1101 |
^^^ | Binary XOR Operator copies the bit if it is set in one operand but not both. | (A ^^^ B) will give 49, which is 0011 0001 |
~~~ | Binary Ones Complement Operator is unary and has the effect of 'flipping' bits. | (~~~A) will give -61, which is 1100 0011 in 2's complement form. |
<<< | Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand. | A <<< 2 will give 240 which is 1111 0000 |
>>> | Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand. | A >>> 2 will give 15 which is 0000 1111 |
Operators Precedence
The following table shows the order of precedence of operators and other expression keywords in the F# language, from lowest precedence to the highest precedence.Show Example
Operator | Associativity |
---|---|
as | Right |
when | Right |
| (pipe) | Left |
; | Right |
let | Non associative |
function, fun, match, try | Non associative |
if | Non associative |
→ | Right |
:= | Right |
, | Non associative |
or, || | Left |
&, && | Left |
< op, >op, =, |op, &op | Left |
&&& , |||, ^^^, ~~~, <<<, >>> | Left |
^ op | Right |
:: | Right |
:?>, :? | Non associative |
- op, +op, (binary) | Left |
* op, /op, %op | Left |
** op | Right |
f x (function application) | Left |
| (pattern match) | Right |
prefix operators (+op, -op, %, %%, &, &&, !op, ~op) | Left |
. | Left |
f(x) | Left |
f<types> | Left |
No comments:
Post a Comment