পৃষ্ঠাসমূহ

Search Your Article

CS

 

Welcome to GoogleDG – your one-stop destination for free learning resources, guides, and digital tools.

At GoogleDG, we believe that knowledge should be accessible to everyone. Our mission is to provide readers with valuable ebooks, tutorials, and tech-related content that makes learning easier, faster, and more enjoyable.

What We Offer:

  • 📘 Free & Helpful Ebooks – covering education, technology, self-development, and more.

  • 💻 Step-by-Step Tutorials – practical guides on digital tools, apps, and software.

  • 🌐 Tech Updates & Tips – simplified information to keep you informed in the fast-changing digital world.

  • 🎯 Learning Support – resources designed to support students, professionals, and lifelong learners.

    Latest world News 

     

Our Vision

To create a digital knowledge hub where anyone, from beginners to advanced learners, can find trustworthy resources and grow their skills.

Why Choose Us?

✔ Simple explanations of complex topics
✔ 100% free access to resources
✔ Regularly updated content
✔ A community that values knowledge sharing

We are continuously working to expand our content library and provide readers with the most useful and relevant digital learning materials.

📩 If you’d like to connect, share feedback, or suggest topics, feel free to reach us through the Contact page.

Pageviews

Thursday, February 2, 2017

Groovy - Traits

Traits are a structural construct of the language which allow −
  • Composition of behaviors.
  • Runtime implementation of interfaces.
  • Compatibility with static type checking/compilation
They can be seen as interfaces carrying both default implementations and state. A trait is defined using the trait keyword.
An example of a trait is given below −
trait Marks {
   void DisplayMarks() {
      println("Display Marks");
   } 
}
One can then use the implement keyword to implement the trait in the similar way as interfaces.
class Example {
   static void main(String[] args) {
      Student st = new Student();
      st.StudentID = 1;
      st.Marks1 = 10; 
      println(st.DisplayMarks());
   } 
} 

trait Marks { 
   void DisplayMarks() {
      println("Display Marks");
   } 
} 

class Student implements Marks { 
   int StudentID
   int Marks1;
}

Implementing Interfaces

Traits may implement interfaces, in which case the interfaces are declared using the implements keyword.
An example of a trait implementing an interface is given below. In the following example the following key points can be noted.
  • An interface Total is defined with the method DisplayTotal.
  • The trait Marks implements the Total interface and hence needs to provide an implementation for the DisplayTotal method.
class Example {
   static void main(String[] args) {
      Student st = new Student();
      st.StudentID = 1;
      st.Marks1 = 10;
  
      println(st.DisplayMarks());
      println(st.DisplayTotal());
   } 
} 

interface Total {
   void DisplayTotal() 
} 

trait Marks implements Total {
   void DisplayMarks() {
      println("Display Marks");
   }
 
   void DisplayTotal() {
      println("Display Total"); 
   } 
} 

class Student implements Marks { 
   int StudentID
   int Marks1;  
} 
The output of the above program would be −
Display Marks 
Display Total

Properties

A trait may define properties. An example of a trait with a property is given below.
In the following example, the Marks1 of type integer is a property.
class Example {
   static void main(String[] args) {
      Student st = new Student();
      st.StudentID = 1;
  
      println(st.DisplayMarks());
      println(st.DisplayTotal());
   } 
 
   interface Total {
      void DisplayTotal() 
   } 
 
   trait Marks implements Total {
      int Marks1;
  
      void DisplayMarks() {
         this.Marks1 = 10;
         println(this.Marks1);
      }
  
      void DisplayTotal() {
         println("Display Total");
      } 
   } 
 
   class Student implements Marks {
      int StudentID 
   }
} 
The output of the above program would be −
10 
Display Total

Composition of Behaviors

Traits can be used to implement multiple inheritance in a controlled way, avoiding the diamond issue. In the following code example, we have defined two traits – Marks and Total. Our Student class implements both traits. Since the student class extends both traits, it is able to access the both of the methods – DisplayMarks and DisplayTotal.
class Example {
   static void main(String[] args) {
      Student st = new Student();
      st.StudentID = 1;
  
      println(st.DisplayMarks());
      println(st.DisplayTotal()); 
   } 
} 

trait Marks {
   void DisplayMarks() {
      println("Marks1");
   } 
} 

trait Total {
   void DisplayTotal() { 
      println("Total");
   } 
}  

class Student implements Marks,Total {
   int StudentID 
}   
The output of the above program would be −
Total 
Marks1

Extending Traits

Traits may extend another trait, in which case you must use the extends keyword. In the following code example, we are extending the Total trait with the Marks trait.
class Example {
   static void main(String[] args) {
      Student st = new Student();
      st.StudentID = 1;
      println(st.DisplayMarks());
   } 
} 

trait Marks {
   void DisplayMarks() {
      println("Marks1");
   } 
} 

trait Total extends Marks {
   void DisplayMarks() {
      println("Total");
   } 
}  

class Student implements Total {
   int StudentID 
}
The output of the above program would be −
Total

No comments:

Post a Comment