পৃষ্ঠাসমূহ

Search Your Article

CS

 

Welcome to GoogleDG – your one-stop destination for free learning resources, guides, and digital tools.

At GoogleDG, we believe that knowledge should be accessible to everyone. Our mission is to provide readers with valuable ebooks, tutorials, and tech-related content that makes learning easier, faster, and more enjoyable.

What We Offer:

  • 📘 Free & Helpful Ebooks – covering education, technology, self-development, and more.

  • 💻 Step-by-Step Tutorials – practical guides on digital tools, apps, and software.

  • 🌐 Tech Updates & Tips – simplified information to keep you informed in the fast-changing digital world.

  • 🎯 Learning Support – resources designed to support students, professionals, and lifelong learners.

    Latest world News 

     

Our Vision

To create a digital knowledge hub where anyone, from beginners to advanced learners, can find trustworthy resources and grow their skills.

Why Choose Us?

✔ Simple explanations of complex topics
✔ 100% free access to resources
✔ Regularly updated content
✔ A community that values knowledge sharing

We are continuously working to expand our content library and provide readers with the most useful and relevant digital learning materials.

📩 If you’d like to connect, share feedback, or suggest topics, feel free to reach us through the Contact page.

Pageviews

Friday, March 24, 2017

NumPy - Matplotlib

Matplotlib is a plotting library for Python. It is used along with NumPy to provide an environment that is an effective open source alternative for MatLab. It can also be used with graphics toolkits like PyQt and wxPython.
Matplotlib module was first written by John D. Hunter. Since 2012, Michael Droettboom is the principal developer. Currently, Matplotlib ver. 1.5.1 is the stable version available. The package is available in binary distribution as well as in the source code form on www.matplotlib.org.

Conventionally, the package is imported into the Python script by adding the following statement −
from matplotlib import pyplot as plt
Here pyplot() is the most important function in matplotlib library, which is used to plot 2D data. The following script plots the equation y = 2x + 5

Example

import numpy as np 
from matplotlib import pyplot as plt 

x = np.arange(1,11) 
y = 2 * x + 5 
plt.title("Matplotlib demo") 
plt.xlabel("x axis caption") 
plt.ylabel("y axis caption") 
plt.plot(x,y) 
plt.show()
An ndarray object x is created from np.arange() function as the values on the x axis. The corresponding values on the y axis are stored in another ndarray object y. These values are plotted using plot() function of pyplot submodule of matplotlib package.
The graphical representation is displayed by show() function.
The above code should produce the following output −
Matplotlib Demo Instead of the linear graph, the values can be displayed discretely by adding a format string to the plot() function. Following formatting characters can be used.
Character Description
'-' Solid line style
'--' Dashed line style
'-.' Dash-dot line style
':' Dotted line style
'.' Point marker
',' Pixel marker
'o' Circle marker
'v' Triangle_down marker
'^' Triangle_up marker
'<' Triangle_left marker
'>' Triangle_right marker
'1' Tri_down marker
'2' Tri_up marker
'3' Tri_left marker
'4' Tri_right marker
's' Square marker
'p' Pentagon marker
'*' Star marker
'h' Hexagon1 marker
'H' Hexagon2 marker
'+' Plus marker
'x' X marker
'D' Diamond marker
'd' Thin_diamond marker
'|' Vline marker
'_' Hline marker
The following color abbreviations are also defined.
Character Color
'b' Blue
'g' Green
'r' Red
'c' Cyan
'm' Magenta
'y' Yellow
'k' Black
'w' White
To display the circles representing points, instead of the line in the above example, use “ob” as the format string in plot() function.

Example

import numpy as np 
from matplotlib import pyplot as plt 

x = np.arange(1,11) 
y = 2 * x + 5 
plt.title("Matplotlib demo") 
plt.xlabel("x axis caption") 
plt.ylabel("y axis caption") 
plt.plot(x,y,"ob") 
plt.show() 
The above code should produce the following output −
Color Abbreviation

Sine Wave Plot

The following script produces the sine wave plot using matplotlib.

Example

import numpy as np 
import matplotlib.pyplot as plt  

# Compute the x and y coordinates for points on a sine curve 
x = np.arange(0, 3 * np.pi, 0.1) 
y = np.sin(x) 
plt.title("sine wave form") 

# Plot the points using matplotlib 
plt.plot(x, y) 
plt.show() 
Sine Wave

subplot()

The subplot() function allows you to plot different things in the same figure. In the following script, sine and cosine values are plotted.

Example

import numpy as np 
import matplotlib.pyplot as plt  
   
# Compute the x and y coordinates for points on sine and cosine curves 
x = np.arange(0, 3 * np.pi, 0.1) 
y_sin = np.sin(x) 
y_cos = np.cos(x)  
   
# Set up a subplot grid that has height 2 and width 1, 
# and set the first such subplot as active. 
plt.subplot(2, 1, 1)
   
# Make the first plot 
plt.plot(x, y_sin) 
plt.title('Sine')  
   
# Set the second subplot as active, and make the second plot. 
plt.subplot(2, 1, 2) 
plt.plot(x, y_cos) 
plt.title('Cosine')  
   
# Show the figure. 
plt.show()
The above code should produce the following output −
Sub Plot

bar()

The pyplot submodule provides bar() function to generate bar graphs. The following example produces the bar graph of two sets of x and y arrays.

Example

from matplotlib import pyplot as plt 
x = [5,8,10] 
y = [12,16,6]  

x2 = [6,9,11] 
y2 = [6,15,7] 
plt.bar(x, y, align = 'center') 
plt.bar(x2, y2, color = 'g', align = 'center') 
plt.title('Bar graph') 
plt.ylabel('Y axis') 
plt.xlabel('X axis')  

plt.show()
This code should produce the following output −
Bar Graph

No comments:

Post a Comment