Let us create a 3X4 array using arange() function and iterate over it using nditer.
Example 1
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Modified array is:' for x in np.nditer(a): print x,The output of this program is as follows −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: 0 5 10 15 20 25 30 35 40 45 50 55
Example 2
The order of iteration is chosen to match the memory layout of an array, without considering a particular ordering. This can be seen by iterating over the transpose of the above array.import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Transpose of the original array is:' b = a.T print b print '\n' print 'Modified array is:' for x in np.nditer(b): print x,The output of the above program is as follows −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Transpose of the original array is: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] Modified array is: 0 5 10 15 20 25 30 35 40 45 50 55
Iteration Order
If the same elements are stored using F-style order, the iterator chooses the more efficient way of iterating over an array.Example 1
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Transpose of the original array is:' b = a.T print b print '\n' print 'Sorted in C-style order:' c = b.copy(order='C') print c for x in np.nditer(c): print x, print '\n' print 'Sorted in F-style order:' c = b.copy(order='F') print c for x in np.nditer(c): print x,Its output would be as follows −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Transpose of the original array is: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] Sorted in C-style order: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] 0 20 40 5 25 45 10 30 50 15 35 55 Sorted in F-style order: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] 0 5 10 15 20 25 30 35 40 45 50 55
Example 2
It is possible to force nditer object to use a specific order by explicitly mentioning it.import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Sorted in C-style order:' for x in np.nditer(a, order = 'C'): print x, print '\n' print 'Sorted in F-style order:' for x in np.nditer(a, order = 'F'): print x,Its output would be −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Sorted in C-style order: 0 5 10 15 20 25 30 35 40 45 50 55 Sorted in F-style order: 0 20 40 5 25 45 10 30 50 15 35 55
Modifying Array Values
The nditer object has another optional parameter called op_flags. Its default value is read-only, but can be set to read-write or write-only mode. This will enable modifying array elements using this iterator.Example
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' for x in np.nditer(a, op_flags=['readwrite']): x[...]=2*x print 'Modified array is:' print aIts output is as follows −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
External Loop
The nditer class constructor has a ‘flags’ parameter, which can take the following values −| S.No | Parameter & Description |
|---|---|
| 1. | c_index C_order index can be racked |
| 2. | f_index Fortran_order index is tracked |
| 3. | multi-index Type of indexes with one per iteration can be tracked |
| 4. | external_loop Causes values given to be one-dimensional arrays with multiple values instead of zero-dimensional array |
Example
In the following example, one-dimensional arrays corresponding to each column is traversed by the iterator.import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Modified array is:' for x in np.nditer(a, flags = ['external_loop'], order = 'F'): print x,The output is as follows −
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: [ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]
Broadcasting Iteration
If two arrays are broadcastable, a combined nditer object is able to iterate upon them concurrently. Assuming that an array a has dimension 3X4, and there is another array b of dimension 1X4, the iterator of following type is used (array b is broadcast to size of a).Example
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'First array is:' print a print '\n' print 'Second array is:' b = np.array([1, 2, 3, 4], dtype = int) print b print '\n' print 'Modified array is:' for x,y in np.nditer([a,b]): print "%d:%d" % (x,y),Its output would be as follows −
First array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Second array is: [1 2 3 4] Modified array is: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
No comments:
Post a Comment