পৃষ্ঠাসমূহ

Search Your Article

CS

 

Welcome to GoogleDG – your one-stop destination for free learning resources, guides, and digital tools.

At GoogleDG, we believe that knowledge should be accessible to everyone. Our mission is to provide readers with valuable ebooks, tutorials, and tech-related content that makes learning easier, faster, and more enjoyable.

What We Offer:

  • 📘 Free & Helpful Ebooks – covering education, technology, self-development, and more.

  • 💻 Step-by-Step Tutorials – practical guides on digital tools, apps, and software.

  • 🌐 Tech Updates & Tips – simplified information to keep you informed in the fast-changing digital world.

  • 🎯 Learning Support – resources designed to support students, professionals, and lifelong learners.

    Latest world News 

     

Our Vision

To create a digital knowledge hub where anyone, from beginners to advanced learners, can find trustworthy resources and grow their skills.

Why Choose Us?

✔ Simple explanations of complex topics
✔ 100% free access to resources
✔ Regularly updated content
✔ A community that values knowledge sharing

We are continuously working to expand our content library and provide readers with the most useful and relevant digital learning materials.

📩 If you’d like to connect, share feedback, or suggest topics, feel free to reach us through the Contact page.

Pageviews

Friday, March 24, 2017

NumPy - Iterating Over Array

NumPy package contains an iterator object numpy.nditer. It is an efficient multidimensional iterator object using which it is possible to iterate over an array. Each element of an array is visited using Python’s standard Iterator interface.
Let us create a 3X4 array using arange() function and iterate over it using nditer.

Example 1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)

print 'Original array is:'
print a
print '\n'

print 'Modified array is:'
for x in np.nditer(a):
   print x,
The output of this program is as follows −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

Example 2

The order of iteration is chosen to match the memory layout of an array, without considering a particular ordering. This can be seen by iterating over the transpose of the above array.
import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 
   
print 'Original array is:'
print a 
print '\n'  
   
print 'Transpose of the original array is:' 
b = a.T 
print b 
print '\n'  
   
print 'Modified array is:' 
for x in np.nditer(b): 
   print x,
The output of the above program is as follows −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

Iteration Order

If the same elements are stored using F-style order, the iterator chooses the more efficient way of iterating over an array.

Example 1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

print 'Transpose of the original array is:'
b = a.T
print b
print '\n'

print 'Sorted in C-style order:'
c = b.copy(order='C')
print c
for x in np.nditer(c):
   print x,

print '\n'

print 'Sorted in F-style order:'
c = b.copy(order='F')
print c
for x in np.nditer(c):
   print x,
Its output would be as follows −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Sorted in C-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55

Sorted in F-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55

Example 2

It is possible to force nditer object to use a specific order by explicitly mentioning it.
import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Sorted in C-style order:' 
for x in np.nditer(a, order = 'C'): 
   print x,  
print '\n' 

print 'Sorted in F-style order:' 
for x in np.nditer(a, order = 'F'): 
   print x,
Its output would be −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Sorted in C-style order:
0 5 10 15 20 25 30 35 40 45 50 55

Sorted in F-style order:
0 20 40 5 25 45 10 30 50 15 35 55

Modifying Array Values

The nditer object has another optional parameter called op_flags. Its default value is read-only, but can be set to read-write or write-only mode. This will enable modifying array elements using this iterator.

Example

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

for x in np.nditer(a, op_flags=['readwrite']):
   x[...]=2*x
print 'Modified array is:'
print a
Its output is as follows −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[[ 0 10 20 30]
 [ 40 50 60 70]
 [ 80 90 100 110]]

External Loop

The nditer class constructor has a ‘flags’ parameter, which can take the following values −
S.No Parameter & Description
1. c_index
C_order index can be racked
2. f_index
Fortran_order index is tracked
3. multi-index
Type of indexes with one per iteration can be tracked
4. external_loop
Causes values given to be one-dimensional arrays with multiple values instead of zero-dimensional array

Example

In the following example, one-dimensional arrays corresponding to each column is traversed by the iterator.
import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Modified array is:' 
for x in np.nditer(a, flags = ['external_loop'], order = 'F'): 
   print x,
The output is as follows −
Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]

Broadcasting Iteration

If two arrays are broadcastable, a combined nditer object is able to iterate upon them concurrently. Assuming that an array a has dimension 3X4, and there is another array b of dimension 1X4, the iterator of following type is used (array b is broadcast to size of a).

Example

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'First array is:' 
print a 
print '\n'  

print 'Second array is:' 
b = np.array([1, 2, 3, 4], dtype = int) 
print b  
print '\n' 

print 'Modified array is:' 
for x,y in np.nditer([a,b]): 
   print "%d:%d" % (x,y),
Its output would be as follows −
First array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Second array is:
[1 2 3 4]

Modified array is:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4

No comments:

Post a Comment