পৃষ্ঠাসমূহ

Search Your Article

CS

 

Welcome to GoogleDG – your one-stop destination for free learning resources, guides, and digital tools.

At GoogleDG, we believe that knowledge should be accessible to everyone. Our mission is to provide readers with valuable ebooks, tutorials, and tech-related content that makes learning easier, faster, and more enjoyable.

What We Offer:

  • 📘 Free & Helpful Ebooks – covering education, technology, self-development, and more.

  • 💻 Step-by-Step Tutorials – practical guides on digital tools, apps, and software.

  • 🌐 Tech Updates & Tips – simplified information to keep you informed in the fast-changing digital world.

  • 🎯 Learning Support – resources designed to support students, professionals, and lifelong learners.

    Latest world News 

     

Our Vision

To create a digital knowledge hub where anyone, from beginners to advanced learners, can find trustworthy resources and grow their skills.

Why Choose Us?

✔ Simple explanations of complex topics
✔ 100% free access to resources
✔ Regularly updated content
✔ A community that values knowledge sharing

We are continuously working to expand our content library and provide readers with the most useful and relevant digital learning materials.

📩 If you’d like to connect, share feedback, or suggest topics, feel free to reach us through the Contact page.

Pageviews

Friday, March 24, 2017

NumPy - Indexing & Slicing

Contents of ndarray object can be accessed and modified by indexing or slicing, just like Python's in-built container objects.
As mentioned earlier, items in ndarray object follows zero-based index. Three types of indexing methods are available − field access, basic slicing and advanced indexing.

Basic slicing is an extension of Python's basic concept of slicing to n dimensions. A Python slice object is constructed by giving start, stop, and step parameters to the built-in slice function. This slice object is passed to the array to extract a part of array.

Example 1

import numpy as np 
a = np.arange(10) 
s = slice(2,7,2) 
print a[s]
Its output is as follows −
[2  4  6]
In the above example, an ndarray object is prepared by arange() function. Then a slice object is defined with start, stop, and step values 2, 7, and 2 respectively. When this slice object is passed to the ndarray, a part of it starting with index 2 up to 7 with a step of 2 is sliced.
The same result can also be obtained by giving the slicing parameters separated by a colon : (start:stop:step) directly to the ndarray object.

Example 2

import numpy as np 
a = np.arange(10) 
b = a[2:7:2] 
print b
Here, we will get the same output −
[2  4  6]
If only one parameter is put, a single item corresponding to the index will be returned. If a : is inserted in front of it, all items from that index onwards will be extracted. If two parameters (with : between them) is used, items between the two indexes (not including the stop index) with default step one are sliced.

Example 3

# slice single item 
import numpy as np 

a = np.arange(10) 
b = a[5] 
print b
Its output is as follows −
5

Example 4

# slice items starting from index 
import numpy as np 
a = np.arange(10) 
print a[2:]
Now, the output would be −
[2  3  4  5  6  7  8  9]

Example 5

# slice items between indexes 
import numpy as np 
a = np.arange(10) 
print a[2:5]
Here, the output would be −
[2  3  4] 
The above description applies to multi-dimensional ndarray too.

Example 6

import numpy as np 
a = np.array([[1,2,3],[3,4,5],[4,5,6]]) 
print a  

# slice items starting from index
print 'Now we will slice the array from the index a[1:]' 
print a[1:]
The output is as follows −
[[1 2 3]
 [3 4 5]
 [4 5 6]]

Now we will slice the array from the index a[1:]
[[3 4 5]
 [4 5 6]]
Slicing can also include ellipsis (…) to make a selection tuple of the same length as the dimension of an array. If ellipsis is used at the row position, it will return an ndarray comprising of items in rows.

Example 7

# array to begin with 
import numpy as np 
a = np.array([[1,2,3],[3,4,5],[4,5,6]]) 

print 'Our array is:' 
print a 
print '\n'  

# this returns array of items in the second column 
print 'The items in the second column are:'  
print a[...,1] 
print '\n'  

# Now we will slice all items from the second row 
print 'The items in the second row are:' 
print a[1,...] 
print '\n'  

# Now we will slice all items from column 1 onwards 
print 'The items column 1 onwards are:' 
print a[...,1:]
The output of this program is as follows −
Our array is:
[[1 2 3]
 [3 4 5]
 [4 5 6]] 
 
The items in the second column are: 
[2 4 5] 

The items in the second row are:
[3 4 5]

The items column 1 onwards are:
[[2 3]
 [4 5]
 [5 6]] 

No comments:

Post a Comment