পৃষ্ঠাসমূহ

Search Your Article

CS

 

Welcome to GoogleDG – your one-stop destination for free learning resources, guides, and digital tools.

At GoogleDG, we believe that knowledge should be accessible to everyone. Our mission is to provide readers with valuable ebooks, tutorials, and tech-related content that makes learning easier, faster, and more enjoyable.

What We Offer:

  • 📘 Free & Helpful Ebooks – covering education, technology, self-development, and more.

  • 💻 Step-by-Step Tutorials – practical guides on digital tools, apps, and software.

  • 🌐 Tech Updates & Tips – simplified information to keep you informed in the fast-changing digital world.

  • 🎯 Learning Support – resources designed to support students, professionals, and lifelong learners.

    Latest world News 

     

Our Vision

To create a digital knowledge hub where anyone, from beginners to advanced learners, can find trustworthy resources and grow their skills.

Why Choose Us?

✔ Simple explanations of complex topics
✔ 100% free access to resources
✔ Regularly updated content
✔ A community that values knowledge sharing

We are continuously working to expand our content library and provide readers with the most useful and relevant digital learning materials.

📩 If you’d like to connect, share feedback, or suggest topics, feel free to reach us through the Contact page.

Pageviews

Saturday, January 28, 2017

Polymorphism in C++

The word polymorphism means having many forms. Typically, polymorphism occurs when there is a hierarchy of classes and they are related by inheritance.
C++ polymorphism means that a call to a member function will cause a different function to be executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes:
#include <iostream> 
using namespace std;
 
class Shape {
   protected:
      int width, height;
  
   public:
      Shape( int a = 0, int b = 0) {
         width = a;
         height = b;
      }
  
      int area() {
         cout << "Parent class area :" <<endl;
         return 0;
      }
};

class Rectangle: public Shape {
   public:
      Rectangle( int a = 0, int b = 0):Shape(a, b) { }
      int area () { 
         cout << "Rectangle class area :" <<endl;
         return (width * height); 
      }
};

class Triangle: public Shape{
   public:
      Triangle( int a = 0, int b = 0):Shape(a, b) { }
      int area () { 
         cout << "Triangle class area :" <<endl;
         return (width * height / 2); 
      }
};

// Main function for the program
int main( ) {
   Shape *shape;
   Rectangle rec(10,7);
   Triangle  tri(10,5);

   // store the address of Rectangle
   shape = &rec;
 
   // call rectangle area.
   shape->area();

   // store the address of Triangle
   shape = &tri;
 
   // call triangle area.
   shape->area();
   
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Parent class area
Parent class area
The reason for the incorrect output is that the call of the function area() is being set once by the compiler as the version defined in the base class. This is called static resolution of the function call, or static linkage - the function call is fixed before the program is executed. This is also sometimes called early binding because the area() function is set during the compilation of the program.
But now, let's make a slight modification in our program and precede the declaration of area() in the Shape class with the keyword virtual so that it looks like this:
class Shape {
   protected:
      int width, height;
   public:
      Shape( int a = 0, int b = 0) {
         width = a;
         height = b;
      }
  
      virtual int area() {
         cout << "Parent class area :" <<endl;
         return 0;
      }
};
After this slight modification, when the previous example code is compiled and executed, it produces the following result:
Rectangle class area
Triangle class area
This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since addresses of objects of tri and rec classes are stored in *shape the respective area() function is called.
As you can see, each of the child classes has a separate implementation for the function area(). This is how polymorphism is generally used. You have different classes with a function of the same name, and even the same parameters, but with different implementations.

Virtual Function

A virtual function is a function in a base class that is declared using the keyword virtual. Defining in a base class a virtual function, with another version in a derived class, signals to the compiler that we don't want static linkage for this function.
What we do want is the selection of the function to be called at any given point in the program to be based on the kind of object for which it is called. This sort of operation is referred to as dynamic linkage, or late binding.

Pure Virtual Functions

It's possible that you'd want to include a virtual function in a base class so that it may be redefined in a derived class to suit the objects of that class, but that there is no meaningful definition you could give for the function in the base class.
We can change the virtual function area() in the base class to the following:
class Shape {
   protected:
      int width, height;
   public:
      Shape( int a = 0, int b = 0) {
         width = a;
         height = b;
      }
  
      // pure virtual function
      virtual int area() = 0;
};
The = 0 tells the compiler that the function has no body and above virtual function will be called pure virtual function.

No comments:

Post a Comment